India Electric Vehicle (EV) Market
India, like many other countries, is well positioned to benefit from the shift to zero-tailpipe emission electric driving. Road transportation is a major contributor to air pollution (over 30%), choking our towns, cities and villages across India. Diesel vehicles, in particular, diesel trucks and diesel buses, are significant sources for tailpipe emissions. But given the rise in the standard of living, since liberalisation, the demand for privately owned passenger cars has increased at an unprecedented pace, further worsening the air quality. India has more than 3 crores (30 million) cars releasing tailpipe emissions on its roads!
Though we have seen some improvements in air quality during the ongoing pandemic (as a result of lower vehicle traffic), India’s shift to electric driving will be key in achieving long-term higher air quality. Of course, apart from EVs, the continued development of green and renewable energy infrastructure will be key in achieving lower long-term air pollution. India has already demonstrated global leadership in regards to large-scale solar and wind projects! Hopefully, India will replicate the success with zero-emission electric vehicles.
Despite recent announcements and support from local and national government agencies in India, the EV market is still at a nascent stage, well, at least in terms of electric cars and electric vans. Two-wheel electric scooters and three-wheel electric rickshaws (e-rickshaws) have demonstrated a strong uptake, and India is poised to become a global leader in electric scooters and electric rickshaws (e-tuk). In fact, the ubiquitous e-rickshaw commands an impressive 83% of the Indian electric vehicle market. India currently has over 15 lakhs (1.5 million) e-rickshaws, with each EV playing a role in reducing tailpipe emissions on our roads in India.
Sales of passenger electric cars is still at an early stage. In FY2021, though the market witnessed a growth of nearly 110% from the previous year, the absolute volume of cars sold was only 5,905 electric cars. Currently there are less that 15 pure electric car models available on sale in India.
Tata Motors, the biggest automotive manufacturer in India has launched the Tata Nexon electric SUV. Mahindra Electric, another leading Indian automotive manufacturer, has also launched a number of plug-in electric vehicles (EVs), to include, the Mahindra eVerito electric car, Mahindra eSupro electric van and Mahindra e2o Plus compact electric car. International manufacturers, like UK based MG Motors, have also launched the MG ZS electric SUV in India. Also available are the all-electric Jaguar I-PACE SUV and the Hyundai Kona electric SUV.
For those keen on an overview of the types of electric vehicles (EVs), simply scroll down to the end of the article.
Electric Cars: The Basics
For those of you new to zero-emission electric driving, we recommend a read of the following articles:
Sign up to the newsletter
The Land Rover Defender 110 PHEV SUV
Land Rover is an iconic British brand, famed globally for its off-road and four-wheel drive vehicles. Land Rover is owned by Jaguar Land Rover (JLR) Automotive PLC, a leading luxury vehicle manufacturer with a distinctive reputation of being British and iconic. However the automotive company is now owned by the leading Indian industrial conglomerate, the Tata Group.
The Land Rover Defender is an iconic British off-road vehicle. The 4×4 SUV has gained a global reputation for its off-road capability and high quality. The production of the iconic internal combustion engine (ICE) Defender stopped in January 2016. Nearly 2 million Defenders were sold globally, across seven decades. The all-new Land Rover Defender made its debut in 2019 and shares little with its predecessor, except a strong legacy and heritage.
The all-new Defender SUV is also available as a mild hybrid electric vehicle (MHEV) and a plug-in hybrid electric vehicle (PHEV). The Defender 110 PHEV is the first plug-in electric vehicle (PHEV) for this range. Deliveries of this rugged and versatile off-road SUV commenced in early 2021.
The plug-in Defender does not come cheap, however, financial savings can be achieved by taking advantage of the hybrid electric drivetrain. The EV has a 19.2 kWh onboard EV battery, which is a decent size, compared to the average PHEV battery. However, despite the larger EV battery, the available emission-free electric range is limited to 32 mies (WLTP certified). This is not surprising, given the weight of the vehicle (2,600 kg), to include the additional weight of the EV battery.
Expect the real-world electric range to be closer to 25 miles, given that the range is impacted by a number of factors. Some factors include: driving profile, speed, passenger load, weather, road condition, wheel size and more. Moreover, the more the PHEV is driven on the e-mode, the better the overall efficiency of the electric vehicle. Land Rover claims a fuel economy up to 113 mpg. Like, EV range, expect the real-world fuel economy to be lower than the manufacturer claimed economy.
To leverage the benefits of electric driving, having a fully charged EV battery is imperative. The Defender PHEV can be charged up to 50 kW DC charging: 0%-80%: 30 minutes. Do keep in mind that not all plug-in electric cars are capable of DC fast charging. In all probability, on most occasions, the EV will be charged overnight at home. We at e-zoomed recommend the use of a dedicated EV charger for home charging and discourage the use of a 3-PIN domestic plug.
The easee EV charger is a good example. The PHEV can be charged up to 100% in 2 hours and 30 minutes. We recommend a ‘topping up’ approach to EV charging. This way, the pure electric mode can be used more often and regular charging is also better for the long-term maintenance of the EV battery. Land Rover offers a warranty up to 6 years or 60,000 miles.
In terms of performance, the Land Rover Defender P400e AWD PHEV does not disappoint. The EV pairs a 2.0-litre (4 cylinder) petrol combustion engine with an electric motor (105 kW). Despite the size and weight of the EV, acceleration is impressive: 0-60 mph in 5.4 seconds and a 119 mph top speed (maximum power: 404 hp/ torque: 640 Nm). The drive is refined and in e-mode the ride quality is even better!
The Defender plug-in is certainly good looking and the interior is just as compelling, offering a high quality technology/ features-laden driving cockpit, to include: wireless charging, timed charging, keyless entry, Pivi Pro with connected navigation, 3D surround camera, lane keep assist, traffic sign recognition and adaptive speed limiter, wade sensing, dynamic stability control, roll stability control and more. In terms of practicality, there is ample headroom and legroom for rear seat passengers and the boot space is 550L. The EV is only available as a five-door.
The EV has tailpipe emissions up to 71g (CO2/km). The Defender 110 plug-in hybrid SUV is not available in India.
PROS | CONS |
---|---|
Good looks, practical and spacious | Expensive when all options are considered |
Excellent off-road capabilities | Not as fuel-efficient as other PHEVs. High tailpipe emissions |
DC fast charging capability | Limited electric range |
The Land Rover Defender 110 Plug-In Hybrid (credit:JLR)
Driving an electric vehicle (EV) is cheaper than driving a petrol or diesel vehicle. As an example, in India, filling a full tank of fuel for the internal combustion engine (ICE) Tata Nexon SUV will cost up to Rs 5,000 (assuming an average cost per litre of Rs 100. The Tata Nexon has a fuel tank capacity of 44 L).
In comparison, the Tata Nexon Pure Electric SUV will cost less than Rs 300 for a full EV battery charge (EV Battery size: 30.2 kWh). In India, the average cost for residential electricity is between Rs 5 to Rs 10 per kWh(unit). Therefore the cost to drive per km (or mile) in a pure electric vehicle is substantially lower than a petrol or diesel vehicle.
At an average one can expect a cost per km of Rs 1 for a zero-emission EV, while for an equivalent petrol or diesel vehicle, the cost per km could be up to Rs 7 per km. The annual cost savings achieved by switching to electric driving is significant!
At A Glance | |
---|---|
EV Type: | Plug-In Hybrid Electric Vehicle (PHEV) |
Vehicle Type: | SUV |
Engine: | Electric/ Petrol |
Available In India: | No |
Trims (3 Options) |
---|
DEFENDER X-DYNAMIC S |
DEFENDER X-DYNAMIC SE |
DEFENDER X-DYNAMIC HSE |
EV Battery & Emissions | |
---|---|
EV Battery Type: | Lithium-ion |
EV Battery Capacity: | Available in one battery size: 19.2 kWh |
Charging: | 50 kW DC charging: 0%-80%: 30 minutes. Onboard charger: 7 kW AC (0%-100%: 2 hrs 30 mins) |
Charge Port: | Type 2 |
EV Cable Type: | Type 2 |
Tailpipe Emissions: | 71 -57g (CO2/km) |
Warranty: | 6 years or 60,000 miles |
Charging Times (Overview) | |
---|---|
Slow charging AC (3 kW – 3.6 kW): | 6 – 12 hours (dependent on size of EV battery & SOC) |
Fast charging AC (7 kW – 22 kW): | 3 – 8 hours (dependent on size of EV battery & SoC) |
Rapid charging AC (43 kW): | 0-80%: 20 mins to 60 mins (dependent on size of EV battery & SoC) |
Rapid charging DC (50 kW+): | 0-80%: 20 mins to 60 mins (dependent on size of EV battery & SoC) |
Ultra rapid charging DC (150 kW+): | 0-80% : 20 mins to 40 mins (dependent on size of EV battery & SoC) |
Tesla Supercharger (120 kW – 250 kW): | 0-80%: up to 25 mins (dependent on size of EV battery & SoC) |
- Note 1: SoC: state of charge
Dimensions | |
---|---|
Height (mm): | 1967 |
Width (mm): | 2008 |
Length (mm): | 5018 |
Wheelbase (mm): | 3022 |
Turning Circle (m): | 12.8 |
Boot Space (L): | 550 |
P400e AWD Automatic PHEV | |
---|---|
EV Battery Capacity: | 19.2 kWh |
Pure Electric Range (WLTP): | 27 – 32 miles |
Electric Energy Consumption (Wh/km): | N/A |
Fuel Consumption (mpg): | 91.1 – 113.0 |
Charging: | 50 kW DC charging: 0%-80%: 30 minutes. Onboard charger: 7 kW AC (0%-100%: 2 hrs 30 mins) |
Top Speed: | 119 mph (electric mode: 87 mph) |
0-60 mph: | 5.4 seconds |
Drive: | All-wheel drive (AWD) |
Electric Motor (kW): | 105 |
Max Power (HP): | 404 |
Torque (Nm): | 640 |
Transmission: | Automatic |
Seats: | 5 |
Doors: | 5 |
Unladen Weight-EU (kg): | 2,613 |
Colours: | 10 |
NCAP Safety Rating: | Five-Star |
Types Of Electric Vehicles (EVs)
“Electric vehicle” is an umbrella term, and a broad one at that. There are a number of different types of electric vehicles (EVs), each with its distinct characteristics and advantages. These include:
- BEVs: Battery-electric vehicles (pure electric)
- PHEVs: Plug-in hybrid electric vehicles (electric and internal combustion engine (ICE) combined)
- MHEVs: Mild hybrid electric vehicles (internal combustion engine (gasoline or diesel) along with regenerative braking)
- FCEVs: Fuel cell electric vehicle (electric with hydrogen as fuel)
The above “types” are powered either entirely or partially by electric energy and have different environmental impacts.
Battery-Electric Vehicles (BEVs)
Battery-electric vehicles (BEVs), also known as pure electric vehicles, are powered entirely by electricity (i.e. the vehicle does not have a conventional internal combustion engine). BEVs have zero-tailpipe emissions and help improve local air quality.
BEVs are also very economical to drive. A BEV can cost as little as Rs 50 per 100 kilometres to drive. Examples of best-selling EVs include, the all-electric Tesla Model 3 and the all-electric Renault Zoe. A BEV is charged by plugging in the electric vehicle to a dedicated electric car charging station (home or public charging stations). BEVs are well suited for those living in towns, cities and urban centres. Of course, battery-electric vehicles are also suitable for those living in rural settings.
Plug-In Hybrid Electric Vehicles (PHEVs)
Plug-in hybrid electric vehicles (PHEVs) differ from battery-electric vehicles (BEVs), in that, PHEVs use both a conventional internal combustion engine (ICE) and an electric engine for propulsion. Plug-in hybrid vehicles combine the advantages of electric driving and internal combustion engine driving.
On shorter distances, the PHEV uses the electric mode to drive emission-free, using the on-board EV battery and regenerative braking. For longer distances, the plug-in hybrid electric vehicles switches to using the internal combustion engine. With a PHEV, the vehicle can cost as little Rs 50 per 100 kilometres to drive on e-mode, without any tailpipe pollution, and also be driven long-distances, without the fear of range anxiety! Most PHEVs have an EV battery of up to 15 kWh and can achieve a zero-emission electric range of up to 50 kilometres. No wonder PHEVs are fast becoming popular globally, with much potential or India. Like a BEV, the plug-in hybrid electric vehicle is charged by using an external power source (EV charging point) for charging.
PHEVs are suitable for those that drive long-distances on a regular basis but want to lower the negative environmental impact from tailpipe pollution. PHEVs are also suitable for those individuals and families that are seeking to save money by taking advantage of electric driving. The Volvo XC40 PHEV and the Volkswagen Golf 8 are good examples of PHEVs.
Mild Hybrid Electric Vehicles (MHEVs)
Mild hybrid electric vehicles (MHEVs) are a limited form of electric driving. These vehicles also use hybrid technologies (electric driving and internal combustion engine), but the EV battery is much smaller than a BEV or PHEV. Moreover, in a mild hybrid, the EV battery cannot be charged via an external source (i.e. EV charging station). In a MHEV, the battery is charged by capturing the energy released during braking, a process known as regenerative braking. MHEVs have lower tailpipe emissions, and are more economical to own, run and maintain than petrol and diesel cars. MHEVs are a better option than a petrol or diesel car, but not as good an option as a BEV or PHEV. Mild hybrids are well suited for those living in regions with limited charging infrastructure. Again, MHEVs have great potential in India, given the limited public EV charging infrastructure.
The Toyota Prius is a good example of a mild hybrid electric vehicle.
Fuel Cell Electric Vehicles (FCEVs)
Fuel Cell Electric Vehicles (FCEVs) also called hydrogen fuel cell vehicles, have a fuel cell stack that uses hydrogen to generate the electricity needed to power the electric vehicle. The fuel cell generates electricity and pure water vapour that can escape via the tailpipe. It is capable of generating electricity as long as there is a steady supply of hydrogen. Fuel cell electric vehicles can be refuelled with hydrogen at purpose built filling stations. Filling an FEC takes no more than five minutes.
FCEVs have a range of about 500 kilometers or more between refueling. Today, the only and major limitation is the very limited hydrogen refuelling station network globally. The Toyota Mirai FCEV is a good example of this type of EV.
While e-zoomed uses reasonable efforts to provide accurate and up-to-date information, some of the information provided is gathered from third parties and has not been independently verified by e-zoomed. While the information from the third party sources is believed to be reliable, no warranty, express or implied, is made by e-zoomed regarding the accuracy, adequacy, completeness, legality, reliability or usefulness of any information. This disclaimer applies to both isolated and aggregate uses of this information.