The Peugeot 3008 Plug-In Hybrid SUV: The Complete Guide For India

Peugeot 3008 Plug-In Hybrid SUV
Price: N/A
Type of electric vehicle: Plug-In Hybrid Electric Vehicle (PHEV)
Body type: SUV
Battery size: 13.2 kWh
Electric range (WLTP): 32 - 40 miles
Tailpipe emissions: 30g - 41g (CO2/km)


Electric Cars: The Basics


For those of you new to zero-emission electric driving, we recommend a read of the following articles:

For those keen on an overview of the benefits of electric vehicles (EVs) and the different types of electric vehicles (EVs), simply scroll down to the end of the article!


Sign up to the newsletter

The New Peugeot 3008 SUV PHEV


Peugeot is part of the Netherlands based Stellantis N.V., which was formed by the merger of Fiat Chrysler Automobiles (Italian/ American) and Groupe PSA (French). You may not be familiar with these names, but the automotive brands in the portfolio would be well known to most consumers. These include: Maserati, Opel, Vauxhall, Jeep, FIAT, Alfa Romeo etc. The company’s portfolio of electric vehicles (EVs) include:

The Peugeot 3008 compact SUV was unveiled in 2008 in Croatia, and launched in 2009. Peugeot launched a diesel hybrid variant of this SUV in 2012, making it the first mass- production diesel electric hybrid in the world. In 2020, the vehicle received a significant facelift. The latest Peugeot 3008 plug-in hybrid electric vehicle (PHEV) variant, is available as a front-wheel drive (FWD) and an all-wheel drive (AWD).

The Peugeot 3008 family SUV has firmly established its reputation for its head-turning exterior styling. However, with the addition of a hybrid drivetrain, the mid-sized crossover has further enhanced its appeal, given the improved environment credentials. The electric vehicle (EV) has far lower tailpipe emissions (41g CO2/km), compared to the conventional internal combustion engine (ICE) variant (166g CO2/km).

The Peugeot plug-in electric SUV has a 13.2 kWh onboard EV battery, with a claimed zero-tailpipe emission electric range up to 39 miles (WLTP certified). Of course, the real-world pure electric range will be lower, and possibly closer to 32 miles. The real-world EV range is impacted by a number of factors, to include: driving profile, speed, passenger load, weather, road condition, wheel size etc.

A range of 32 miles may not seem much, but given that the majority of motorists drive a mere 30 miles per day, the electric range is sufficient to help lower driving costs per mile.

The use of the electric mode also helps improve the overall efficiency of the electric vehicle. Peugeot claims a fuel economy up to 235.4 mpg. Of course, real-world fuel economy will be lower than the claimed figures, but the fuel economy of the PHEV will be far better, compared to the conventional combustion engine variant (39.7 mpg).

To leverage the benefits of electric driving, having a fully charged EV battery is imperative. The PHEV is not compatible with DC charging (not all plug-in electric cars are capable of DC rapid charging). In all probability, on most occasions, the EV will be charged overnight at home. We at e-zoomed recommend the use of a dedicated EV charger for home charging. The single-phase easee EV charger is a good example. The PHEV can be charged up to 100% in 1 hour and 45 minutes. Charging at 3.7 kW will take 3 hours and 4 minutes to fully charge the EV.

We recommend a ‘topping up’ approach to EV charging. This way, the e-mode can be used more often and regular charging is also better for the long-term maintenance of the EV battery. Peugeot offers a warranty up to 8 years or 100,000 miles for the battery (70% of original capacity). We at e-zoomed discourage the use of a domestic 3-PIN plug for charging an electric car.

The Peugeot 3008 HYBRID 225 e-EAT8 pairs a 1.6-litre petrol engine with an electric motor (80kW), delivering a maximum combined 225 HP and 266 Nm torque. The electric car can achieve 0-62 mph in 8.9 seconds. The top speed of the EV is 140 mph (84 mph on electric mode).

Also on offer is a four-wheel drive variant. The 3008 HYBRID 300 e-EAT8 pairs a 1.6-litre petrol engine with two electric motor (80kW each), placed in the front and rear of the electric vehicle, delivering a maximum combined 300 HP and 383 Nm torque. The electric SUV can achieve 0-62 mph in 6.1 seconds. The top speed of the EV is 149 mph (84 mph on all-electric mode). The EV benefits from instant torque, as is the case with electric cars.

In terms of practicality, the 3008 PHEV does not offer class-leading interior space. Having said that, the EV still offers ample legroom and headroom for rear seat passengers. The 3008 also benefits from a good driver position and visibility. The boot space has been impacted by the addition of the electric drivetrain, with the four-wheel drive variant, further impacted due to the placement of the second electric motor in the rear. The EV offers boot space up to 395 L.

However, the PHEV more than makes up for the compromise on practicality, by offering a high-quality interior cabin with a good level of standard technology and safety features. These include: premium i-cockpit with 8″ touchscreen and 12.3″ digital display, Apple Car Play, Android Auto, ambient lighting, extended traffic sign recognition, driving timer alert system, dynamic stability control, lane keeping assist, front collision warning, 180 reversing camera and more. The PHEV has been awarded a Five-Star NCAP safety rating.

The EV has claimed tailpipe emissions up to 41g CO2/km. Again, substantially lower than the emissions of the conventional combustion engine variant. The Peugeot 3008 plug-in hybrid electric vehicle is not available in India.


PROS CONS
Fantastic looking exterior7 kW onboard charger not included as standard
Good level of standard equipmentInterior space and cargo volume is not class-leading
Available in FWD and AWDClaimed economy unrealistic

Gallery


The Peugeot 3008 PHEV SUV (credit: Peugeot)


Driving an electric vehicle (EV) is cheaper than driving a petrol or diesel vehicle. As an example, in India, filling a full tank of fuel for the internal combustion engine (ICE) Tata Nexon SUV will cost up to Rs 5,000 (assuming an average cost per litre of Rs 100. The Tata Nexon has a fuel tank capacity of 44 L).

In comparison, the Tata Nexon Pure Electric SUV will cost less than Rs 300 for a full EV battery charge (EV Battery size: 30.2 kWh). In India, the average cost for residential electricity is between Rs 5 to Rs 10 per kWh(unit). Therefore the cost to drive per km (or mile) in a pure electric vehicle is substantially lower than a petrol or diesel vehicle.

At an average one can expect a cost per km of Rs 1 for a zero-emission EV, while for an equivalent petrol or diesel vehicle, the cost per km could be up to Rs 7 per km. The annual cost savings achieved by switching to electric driving is significant!


At A Glance
EV Type:Plug-In Hybrid Electric Vehicle (PHEV)
Vehicle Type:SUV
Engine:Petrol-Electric
Available In India:No

Trims (4 Options)
Allure
Allure Premium
GT
GT Premium

EV Battery & Emissions
EV Battery Type:Lithium-ion
EV Battery Capacity:Available in one battery size: 13.2 kWh
Charging:DC charging not available. Onboard charger: 3.7 kW standard (0% – 100%: 3 hrs). 7.4 kW AC optional (0% – 100%: 1 hrs 45 mins)
Charge Port:Type 2
EV Cable Type:Type 2
Tailpipe Emissions:30g – 41g (CO2/km)
Warranty:8 years or 100,000 miles

Charging Times (Overview)
Slow charging AC (3 kW – 3.6 kW):6 – 12 hours (dependent on size of EV battery & SOC)
Fast charging AC (7 kW – 22 kW):3 – 8 hours (dependent on size of EV battery & SoC)
Rapid charging AC (43 kW):0-80%: 20 mins to 60 mins (dependent on size of EV battery & SoC)
Rapid charging DC (50 kW+):0-80%: 20 mins to 60 mins (dependent on size of EV battery & SoC)
Ultra rapid charging DC (150 kW+):0-80% : 20 mins to 40 mins (dependent on size of EV battery & SoC)
Tesla Supercharger (120 kW – 250 kW):0-80%: up to 25 mins (dependent on size of EV battery & SoC)

Dimensions
Height (mm):1620
Width (mm):1841
Length (mm):4447
Wheelbase (mm):2675
Turning Circle (m):10,7
Boot Space (L):395

Peugeot 3008 HYBRID 225 e-EAT8
EV Battery Capacity:13.2 kWh
Pure Electric Range (WLTP):32 – 39 miles
Electric Energy Consumption (Wh/km):N/A
Fuel Consumption (MPG):157.2 – 222.3
Charging:DC charging not available. Onboard charger: 3.7 kW standard (0% – 100%: 3 hrs). 7.4 kW AC optional (0% – 100%: 1 hrs 45 mins)
Top Speed:140 mph (electric: 84 mpg)
0-62 mph:8.9 seconds
Drive:Front-wheel Drive (FWD)
Electric Motor (kW):80
Max Power (hp):225
Torque (Nm):266
Transmission:Automatic
Seats:5
Doors:5
Kerb Weight (kg):1,760
Colours:7
NCAP Safety Rating:Five-Star

Peugeot 3008 HYBRID 300 e-EAT8
EV Battery Capacity:13.2 kWh
Pure Electric Range (WLTP):34 – 40 miles
Electric Energy Consumption (Wh/km):N/A
Fuel Consumption (MPG):166.2 – 235.4
Charging:DC charging not available. Onboard charger: 3.7 kW standard (0% – 100%: 3 hrs). 7.4 kW AC optional (0% – 100%: 1 hrs 45 mins)
Top Speed:149 mph (electric: 84 mpg)
0-62 mph:6.1 seconds
Drive:All-wheel Drive (AWD)
Electric Motor (kW):80
Max Power (hp):300
Torque (Nm):383
Transmission:Automatic
Seats:5
Doors:5
Kerb Weight (kg):1,840
Colours:7
NCAP Safety Rating:Five-Star

Benefits Of Electric Driving


The benefits of electric driving are many, with significant advantageous over petrol and diesel internal combustion (ICE) engine cars, for all stakeholders. These benefits include:

  • Lower to zero-tailpipe emissions
  • Lower running costs
  • Lower taxes
  • Lower maintenance costs
  • Lower noise pollution
  • Convenience of charging at home
  • Smoother drive
  • Instant torque for acceleration
  • Lower environmental impact

Below we have highlighted three of our favourite benefits of owning and driving an electric car.


Improved Air Quality


Battery-electric vehicles (BEVs) or all-electric vehicles do not have tailpipe pollution. In fact, such electric cars do not even have a tailpipe! Zero-emission electric driving has a real and immediate impact on local air quality i.e. improving air quality. While, plug-in hybrid electric vehicles (PHEVs) have reduced tailpipe pollution compared to traditional petrol and diesel vehicles. The sooner we migrate to electric driving in India, the sooner we can improve air quality for all our cities, towns and villages. Lower air pollution will also result in a reduced number of health issues arising from inhaling toxic pollutants.


Lower Maintenance & Running Costs


Electric vehicles (EVs) are cheaper to maintain and drive. Pure electric cars have far fewer moving parts compared to internal combustion engine (ICE) vehicles. The fewer the moving parts, the lower the probability of repair and maintenance. Moreover charging an electric car can cost as little Rs 50 per 100 kilometres! A full charge can cost between Rs 100 and Rs 200. Significantly cheaper than filling a tank of petrol or diesel!


Lower Noise Pollution


Yes, we in India are far more resilient to noise pollution than those living in the western world. We have certainly got used to horns blaring and engines roaring, day and night. But that does not mean we enjoy or welcome noise pollution. In fact, quite the opposite!

Though much focus has been on the advantageous of ‘air quality’ with an electric car, just as important, is the benefit of lower noise pollution. In fact, pure electric cars are silent, with an inbuilt ‘sound booster’ to increase road safety for pedestrians. As our cities in India and across the world become densely populated with cars, the significant negative impact on ‘quality of life’ as a result of increased noise pollution from petrol and diesel vehicles, is just as dangerous, as increased air pollution. Battery-electric cars are a perfect solution in reducing noise pollution and increasing the living standards for us all. Of course, one can only hope that the self inflicted ‘horn blaring’ pollution will also reduce!


Types Of Electric Vehicles (EVs)


Electric vehicle” is an umbrella term, and a broad one at that. There are a number of different types of electric vehicles (EVs), each with its distinct characteristics and advantages. These include:

  • BEVs: Battery-electric vehicles (pure electric)
  • PHEVs: Plug-in hybrid electric vehicles (electric and internal combustion engine (ICE) combined)
  • MHEVs: Mild hybrid electric vehicles (internal combustion engine (gasoline or diesel) along with regenerative braking)
  • FCEVs: Fuel cell electric vehicle (electric with hydrogen as fuel)

The above “types” are powered either entirely or partially by electric energy and have different environmental impacts.


Battery-Electric Vehicles (BEVs)


Battery-electric vehicles (BEVs), also known as pure electric vehicles, are powered entirely by electricity (i.e. the vehicle does not have a conventional internal combustion engine). BEVs have zero-tailpipe emissions and help improve local air quality.

BEVs are also very economical to drive. A BEV can cost as little as Rs 50 per 100 kilometres to drive. Examples of best-selling EVs include, the all-electric Tesla Model 3 and the all-electric Renault Zoe. A BEV is charged by plugging in the electric vehicle to a dedicated electric car charging station (home or public charging stations). BEVs are well suited for those living in towns, cities and urban centres. Of course, battery-electric vehicles are also suitable for those living in rural settings.


Plug-In Hybrid Electric Vehicles (PHEVs)


Plug-in hybrid electric vehicles (PHEVs) differ from battery-electric vehicles (BEVs), in that, PHEVs use both a conventional internal combustion engine (ICE) and an electric engine for propulsion. Plug-in hybrid vehicles combine the advantages of electric driving and internal combustion engine driving.

On shorter distances, the PHEV uses the electric mode to drive emission-free, using the on-board EV battery and regenerative braking. For longer distances, the plug-in hybrid electric vehicles switches to using the internal combustion engine. With a PHEV, the vehicle can cost as little Rs 50 per 100 kilometres to drive on e-mode, without any tailpipe pollution, and also be driven long-distances, without the fear of range anxiety! Most PHEVs have an EV battery of up to 15 kWh and can achieve a zero-emission electric range of up to 50 kilometres. No wonder PHEVs are fast becoming popular globally, with much potential or India. Like a BEV, the plug-in hybrid electric vehicle is charged by using an external power source (EV charging point) for charging.

PHEVs are suitable for those that drive long-distances on a regular basis but want to lower the negative environmental impact from tailpipe pollution. PHEVs are also suitable for those individuals and families that are seeking to save money by taking advantage of electric driving. The Volvo XC40 PHEV and the Volkswagen Golf 8 are good examples of PHEVs.


Mild Hybrid Electric Vehicles (MHEVs)


Mild hybrid electric vehicles (MHEVs) are a limited form of electric driving. These vehicles also use hybrid technologies (electric driving and internal combustion engine), but the EV battery is much smaller than a BEV or PHEV. Moreover, in a mild hybrid, the EV battery cannot be charged via an external source (i.e. EV charging station). In a MHEV, the battery is charged by capturing the energy released during braking, a process known as regenerative braking. MHEVs have lower tailpipe emissions, and are more economical to own, run and maintain than petrol and diesel cars. MHEVs are a better option than a petrol or diesel car, but not as good an option as a BEV or PHEV. Mild hybrids are well suited for those living in regions with limited charging infrastructure. Again, MHEVs have great potential in India, given the limited public EV charging infrastructure.

The Toyota Prius is a good example of a mild hybrid electric vehicle.


Fuel Cell Electric Vehicles (FCEVs)


Fuel Cell Electric Vehicles (FCEVs) also called hydrogen fuel cell vehicles, have a fuel cell stack that uses hydrogen to generate the electricity needed to power the electric vehicle. The fuel cell generates electricity and pure water vapour that can escape via the tailpipe. It is capable of generating electricity as long as there is a steady supply of hydrogen. Fuel cell electric vehicles can be refuelled with hydrogen at purpose built filling stations. Filling an FEC takes no more than five minutes.

FCEVs have a range of about 500 kilometers or more between refueling. Today, the only and major limitation is the very limited hydrogen refuelling station network globally. The Toyota Mirai FCEV is a good example of this type of EV.




Author

Ashvin Suri

Ashvin has been involved with the renewables, energy efficiency and infrastructure sectors since 2006. He is passionate about the transition to a low-carbon economy and electric transportation. Ashvin commenced his career in 1994, working with US investment banks in New York. Post his MBA from the London Business School (1996-1998), he continued to work in investment banking at Flemings (London) and JPMorgan (London). His roles included corporate finance advisory, M&A and capital raising. He has been involved across diverse industry sectors, to include engineering, aerospace, oil & gas, airports and automotive across Asia and Europe. In 2010, he co-founded a solar development platform, for large scale ground and roof solar projects to include the UK, Italy, Germany and France. He has also advised on various renewable energy (wind and solar) utility scale projects working with global institutional investors and independent power producers (IPP’s) in the renewable energy sector. He has also advised in key international markets like India, to include advising the TVS Group, a multi-billion dollar industrial and automotive group in India. Ashvin has also advised Indian Energy, an IPP backed by Guggenheim (a US$ 165 billion fund). He has also advised AMIH, a US$ 2 billion, Singapore based group. Ashvin has also worked in the real estate and infrastructure sector, to including working with the Matrix Group (a US$ 4 billion property group in the UK) to launch one of the first few institutional real estate funds for the Indian real estate market. The fund was successfully launched with significant institutional support from the UK/ European markets. He has also advised on water infrastructure, to include advising a Swedish clean technology company in the water sector. He is also a member of the Forbury Investment Network advisory committee. He has also been involved with a number of early stage ventures.

Buy Electric Driving Products

Sign up for e-zoomed news and offers

This site uses technical cookies to guarantee an optimal and fast navigation, and analysis cookies to elaborate statistics.
You can visit the Cookie Policy to get more insights or to block the use of all or some cookies, by selecting the Cookie Settings.
By choosing Accept, you give your permission to use the abovementioned cookies.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services