The Toyota RAV4 Plug-In Hybrid SUV: The Complete Guide For India

Toyota RAV4 plug in hybrid electric SUV India
Price: N/A
Type of electric vehicle: Plug-In Hybrid Electric Vehicle (PHEV)
Body type: SUV
Battery size: 18.1kWh
Electric range (WLTP): 46 miles
Tailpipe emissions: 22g (CO2/km)


Electric Cars: The Basics


For those of you new to zero-emission electric driving, we recommend a read of the following articles:

For those keen on an overview of the benefits of electric vehicles (EVs) and the different types of electric vehicles (EVs), simply scroll down to the end of the article!


Sign up to the newsletter

The Toyota RAV4 PHEV SUV


Toyota Motor Corporation, known simply as Toyota, is a leading global automotive company. The company is one of the largest automobile manufacturers in the world and is headquartered in Aichi, Japan. The company currently has a portfolio of the following fully electric and plug-in electric vehicles:

  • Prius Plug-in
  • Mirai Hydrogen Fuel Cell
  • All New Mirai Hydrogen Fuel Cell
  • RAV4 Plug-In

The RAV4 is a compact SUV and the first compact crossover from the Japanese manufacturer. It was introduced in 1994. The acronym RAV was derived from ‘Recreational Activity Vehicle’. The plug-in hybrid electric vehicle (PHEV) variant was launched in 2019 at the LA Auto Show. Sales commenced in Japan in 2020.

Despite the RAV4 SUV being launched many decades ago and Toyota’s leadership in hybrid technology, surprisingly the PHEV variant was introduced rather late. Nevertheless, despite the increased competition in the compact SUV segment, the RAV4 plug-in hybrid has much to offer, for both families and company car drivers.

The Toyota plug-in hybrid SUV has a 18.1 kWh onboard EV battery, with a WLTP certified zero-emission electric range up to 46 miles. Both the EV battery size and the claimed emission-free electric range, are above average, when compared to other PHEVs in this segment.

Though the real-world EV range will be lower, possibly closer to 40 miles (emission-free), the EV still has much to offer those keen to save money by driving on electric mode. Driving an electric car is far cheaper compared to calling on the internal combustion engine (ICE). A 40 miles EV range can be leveraged for both city and motorway driving.

Taking advantage of the EV range will also require inculcating a habit of charging the EV on a regular basis, which again is as easy as charging a smartphone. We at e-zoomed discourage the use of a domestic 3-PIN plug for charging an electric car. A ‘topping up’ approach to charging will help improve the overall efficiency of the vehicle and also improve the long-term maintenance of the onboard EV battery. Toyota offers a class-leading 10 years or 150,000 miles warranty. The PHEV has a 6.6 kW onboard charger and can be fully charged in 2.5 hours.

Of course, driving regularly on the electric mode will further improve the fuel economy of the electric vehicle i.e. lower motoring costs. The automotive manufacturer claims a fuel economy up to 282.4 mpg, but achieving anything close to this, will require taking advantage of the e-mode! In any case, the PHEV will deliver a better fuel economy, compared to the conventional internal combustion engine (ICE) variant (47 mpg).

In terms of performance, the Toyota RAV4 is decent. The electric vehicle (EV) combines a 2.5-litre hybrid AWD-i petrol engine with an onboard electric motor, powered by the EV battery. Despite the additional weight of the EV battery, the RAV4 SUV PHEV can achieve 0-62 mph in 6.0 seconds. This performance is not shabby! The Toyota plug-in electric car delivers 306 HP maximum power and 270 Nm torque. Top speed is 111 mph. Of course, on the pure electric mode, the drive is more refined and quieter.

The interior cabin is spacious and practical, however, it may not feel as premium as the price tag. Toyota offers a host of feature and technology, to include: Toyota Touch 2 with Go Navigation, 9″ Toyota Touch 2 multimedia system with smartphone integration (Apple CarPlay & Android Auto), follow-me-home headlights, 7″ multi-information screen, adaptive cruise control, voice recognition switch on steering wheel, reversing camera, pre-collision system with day & night-time pedestrian and cyclist detection, lane departure alert and more. The all-wheel drive PHEV offers reasonably good headroom and legroom for passengers. The boot space is compromised due to the placement of the onboard EV battery (520 L), but remains useful!

The EV has claimed tailpipe emissions up to 22g CO2/km. Again, substantially lower than the emissions of the conventional petrol variant. Bottom-line, electric driving is good for the environment and the wallet! The Toyota plug-in electric car is not available in India.


PROS CONS
Larger EV battery compared to other PHEVsInterior quality has room for improvement
Good EV range and cheap to run on electric modeMore expensive compared to some rivals
All-wheel drive (AWD) as standardOnboard charger limited to 6.6 kW

Gallery


The Toyota RAV4 PHEV (credit: Toyota)


Driving an electric vehicle (EV) is cheaper than driving a petrol or diesel vehicle. As an example, in India, filling a full tank of fuel for the internal combustion engine (ICE) Tata Nexon SUV will cost up to Rs 5,000 (assuming an average cost per litre of Rs 100. The Tata Nexon has a fuel tank capacity of 44 L).

In comparison, the Tata Nexon Pure Electric SUV will cost less than Rs 300 for a full EV battery charge (EV Battery size: 30.2 kWh). In India, the average cost for residential electricity is between Rs 5 to Rs 10 per kWh(unit). Therefore the cost to drive per km (or mile) in a pure electric vehicle is substantially lower than a petrol or diesel vehicle.

At an average one can expect a cost per km of Rs 1 for a zero-emission EV, while for an equivalent petrol or diesel vehicle, the cost per km could be up to Rs 7 per km. The annual cost savings achieved by switching to electric driving is significant!


At A Glance
EV Type:Plug-In Hybrid Electric Vehicle (PHEV)
Vehicle Type:SUV
Engine:Petrol-Electric
Available In India:No

Trims (3 Options)
Design
Dynamic
Dynamic Premium

EV Battery & Emissions
EV Battery Type:Lithium-ion
EV Battery Capacity:Available in one battery size: 18.1 kWh
Charging:DC charging not available. Onboard charger: 6.6 kW AC (0% – 100%: 2.5 hours)
Charge Port:Type 2
EV Cable Type:Type 2
Tailpipe Emissions:22g (CO2/km)
Warranty:10 years or 150,000 miles

Charging Times (Overview)
Slow charging AC (3 kW – 3.6 kW):6 – 12 hours (dependent on size of EV battery & SOC)
Fast charging AC (7 kW – 22 kW):3 – 8 hours (dependent on size of EV battery & SoC)
Rapid charging AC (43 kW):0-80%: 20 mins to 60 mins (dependent on size of EV battery & SoC)
Rapid charging DC (50 kW+):0-80%: 20 mins to 60 mins (dependent on size of EV battery & SoC)
Ultra rapid charging DC (150 kW+):0-80% : 20 mins to 40 mins (dependent on size of EV battery & SoC)
Tesla Supercharger (120 kW – 250 kW):0-80%: up to 25 mins (dependent on size of EV battery & SoC)

Dimensions
Height (mm):1690
Width (mm):1855
Length (mm):4600
Wheelbase (mm):2690

2.5 Petrol Hybrid AWD-i
EV Battery Capacity:18.1 kWh
Pure Electric Range (WLTP):46 miles
Electric Energy Consumption (Wh/km):N/A
Fuel Consumption (mpg):282.4
Charging:DC charging not available. Onboard charger: 6.6 kW AC (0% – 100%: 2.5 hours)
Top Speed:111 mph
0-62 mph:6.0 seconds
Drive:All-wheel drive (AWD)
Max Power (hp):306 (hybrid system output)
Torque (Nm):270 (hybrid system output)
Transmission:Automatic
Seats:5
Doors:5
Kerb Weight (kg):1,930-1,995
Colours:5
NCAP Safety Rating:Five-Star

Benefits Of Electric Driving


The benefits of electric driving are many, with significant advantageous over petrol and diesel internal combustion (ICE) engine cars, for all stakeholders. These benefits include:

  • Lower to zero-tailpipe emissions
  • Lower running costs
  • Lower taxes
  • Lower maintenance costs
  • Lower noise pollution
  • Convenience of charging at home
  • Smoother drive
  • Instant torque for acceleration
  • Lower environmental impact

Below we have highlighted three of our favourite benefits of owning and driving an electric car.


Improved Air Quality


Battery-electric vehicles (BEVs) or all-electric vehicles do not have tailpipe pollution. In fact, such electric cars do not even have a tailpipe! Zero-emission electric driving has a real and immediate impact on local air quality i.e. improving air quality. While, plug-in hybrid electric vehicles (PHEVs) have reduced tailpipe pollution compared to traditional petrol and diesel vehicles. The sooner we migrate to electric driving in India, the sooner we can improve air quality for all our cities, towns and villages. Lower air pollution will also result in a reduced number of health issues arising from inhaling toxic pollutants.


Lower Maintenance & Running Costs


Electric vehicles (EVs) are cheaper to maintain and drive. Pure electric cars have far fewer moving parts compared to internal combustion engine (ICE) vehicles. The fewer the moving parts, the lower the probability of repair and maintenance. Moreover charging an electric car can cost as little Rs 50 per 100 kilometres! A full charge can cost between Rs 100 and Rs 200. Significantly cheaper than filling a tank of petrol or diesel!


Lower Noise Pollution


Yes, we in India are far more resilient to noise pollution than those living in the western world. We have certainly got used to horns blaring and engines roaring, day and night. But that does not mean we enjoy or welcome noise pollution. In fact, quite the opposite!

Though much focus has been on the advantageous of ‘air quality’ with an electric car, just as important, is the benefit of lower noise pollution. In fact, pure electric cars are silent, with an inbuilt ‘sound booster’ to increase road safety for pedestrians. As our cities in India and across the world become densely populated with cars, the significant negative impact on ‘quality of life’ as a result of increased noise pollution from petrol and diesel vehicles, is just as dangerous, as increased air pollution. Battery-electric cars are a perfect solution in reducing noise pollution and increasing the living standards for us all. Of course, one can only hope that the self inflicted ‘horn blaring’ pollution will also reduce!


Types Of Electric Vehicles (EVs)


Electric vehicle” is an umbrella term, and a broad one at that. There are a number of different types of electric vehicles (EVs), each with its distinct characteristics and advantages. These include:

  • BEVs: Battery-electric vehicles (pure electric)
  • PHEVs: Plug-in hybrid electric vehicles (electric and internal combustion engine (ICE) combined)
  • MHEVs: Mild hybrid electric vehicles (internal combustion engine (gasoline or diesel) along with regenerative braking)
  • FCEVs: Fuel cell electric vehicle (electric with hydrogen as fuel)

The above “types” are powered either entirely or partially by electric energy and have different environmental impacts.


Battery-Electric Vehicles (BEVs)


Battery-electric vehicles (BEVs), also known as pure electric vehicles, are powered entirely by electricity (i.e. the vehicle does not have a conventional internal combustion engine). BEVs have zero-tailpipe emissions and help improve local air quality.

BEVs are also very economical to drive. A BEV can cost as little as Rs 50 per 100 kilometres to drive. Examples of best-selling EVs include, the all-electric Tesla Model 3 and the all-electric Renault Zoe. A BEV is charged by plugging in the electric vehicle to a dedicated electric car charging station (home or public charging stations). BEVs are well suited for those living in towns, cities and urban centres. Of course, battery-electric vehicles are also suitable for those living in rural settings.


Plug-In Hybrid Electric Vehicles (PHEVs)


Plug-in hybrid electric vehicles (PHEVs) differ from battery-electric vehicles (BEVs), in that, PHEVs use both a conventional internal combustion engine (ICE) and an electric engine for propulsion. Plug-in hybrid vehicles combine the advantages of electric driving and internal combustion engine driving.

On shorter distances, the PHEV uses the electric mode to drive emission-free, using the on-board EV battery and regenerative braking. For longer distances, the plug-in hybrid electric vehicles switches to using the internal combustion engine. With a PHEV, the vehicle can cost as little Rs 50 per 100 kilometres to drive on e-mode, without any tailpipe pollution, and also be driven long-distances, without the fear of range anxiety! Most PHEVs have an EV battery of up to 15 kWh and can achieve a zero-emission electric range of up to 50 kilometres. No wonder PHEVs are fast becoming popular globally, with much potential or India. Like a BEV, the plug-in hybrid electric vehicle is charged by using an external power source (EV charging point) for charging.

PHEVs are suitable for those that drive long-distances on a regular basis but want to lower the negative environmental impact from tailpipe pollution. PHEVs are also suitable for those individuals and families that are seeking to save money by taking advantage of electric driving. The Volvo XC40 PHEV and the Volkswagen Golf 8 are good examples of PHEVs.


Mild Hybrid Electric Vehicles (MHEVs)


Mild hybrid electric vehicles (MHEVs) are a limited form of electric driving. These vehicles also use hybrid technologies (electric driving and internal combustion engine), but the EV battery is much smaller than a BEV or PHEV. Moreover, in a mild hybrid, the EV battery cannot be charged via an external source (i.e. EV charging station). In a MHEV, the battery is charged by capturing the energy released during braking, a process known as regenerative braking. MHEVs have lower tailpipe emissions, and are more economical to own, run and maintain than petrol and diesel cars. MHEVs are a better option than a petrol or diesel car, but not as good an option as a BEV or PHEV. Mild hybrids are well suited for those living in regions with limited charging infrastructure. Again, MHEVs have great potential in India, given the limited public EV charging infrastructure.

The Toyota Prius is a good example of a mild hybrid electric vehicle.


Fuel Cell Electric Vehicles (FCEVs)


Fuel Cell Electric Vehicles (FCEVs) also called hydrogen fuel cell vehicles, have a fuel cell stack that uses hydrogen to generate the electricity needed to power the electric vehicle. The fuel cell generates electricity and pure water vapour that can escape via the tailpipe. It is capable of generating electricity as long as there is a steady supply of hydrogen. Fuel cell electric vehicles can be refuelled with hydrogen at purpose built filling stations. Filling an FEC takes no more than five minutes.

FCEVs have a range of about 500 kilometers or more between refueling. Today, the only and major limitation is the very limited hydrogen refuelling station network globally. The Toyota Mirai FCEV is a good example of this type of EV.


Related articles



Author

Ashvin Suri

Ashvin has been involved with the renewables, energy efficiency and infrastructure sectors since 2006. He is passionate about the transition to a low-carbon economy and electric transportation. Ashvin commenced his career in 1994, working with US investment banks in New York. Post his MBA from the London Business School (1996-1998), he continued to work in investment banking at Flemings (London) and JPMorgan (London). His roles included corporate finance advisory, M&A and capital raising. He has been involved across diverse industry sectors, to include engineering, aerospace, oil & gas, airports and automotive across Asia and Europe. In 2010, he co-founded a solar development platform, for large scale ground and roof solar projects to include the UK, Italy, Germany and France. He has also advised on various renewable energy (wind and solar) utility scale projects working with global institutional investors and independent power producers (IPP’s) in the renewable energy sector. He has also advised in key international markets like India, to include advising the TVS Group, a multi-billion dollar industrial and automotive group in India. Ashvin has also advised Indian Energy, an IPP backed by Guggenheim (a US$ 165 billion fund). He has also advised AMIH, a US$ 2 billion, Singapore based group. Ashvin has also worked in the real estate and infrastructure sector, to including working with the Matrix Group (a US$ 4 billion property group in the UK) to launch one of the first few institutional real estate funds for the Indian real estate market. The fund was successfully launched with significant institutional support from the UK/ European markets. He has also advised on water infrastructure, to include advising a Swedish clean technology company in the water sector. He is also a member of the Forbury Investment Network advisory committee. He has also been involved with a number of early stage ventures.

Buy Electric Driving Products

Sign up for e-zoomed news and offers

This site uses technical cookies to guarantee an optimal and fast navigation, and analysis cookies to elaborate statistics.
You can visit the Cookie Policy to get more insights or to block the use of all or some cookies, by selecting the Cookie Settings.
By choosing Accept, you give your permission to use the abovementioned cookies.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services