The Fiat New 500 Electric Cabrio: A Complete Guide For India

fiat electric car
Price: N/A
Type of electric vehicle: Battery-Electric Vehicle (BEV)
Body type: Cabrio (convertible)
Battery size: 42 kWh
Electric range (WLTP): 188 miles
Tailpipe emissions: 0g (CO2/km)


Electric Cars: The Basics


For those of you new to zero-emission electric driving, we recommend a read of the following articles:

For those keen on an overview of the benefits of electric vehicles (EVs) and the different types of electric vehicles (EVs), simply scroll down to the end of the article!


Sign up to the newsletter

The Fiat New 500 Electric Convertible


Fiat Automobile S.p.A. is a subsidiary the Netherlands based Stellantis N.V., which was formed by the merger of Fiat Chrysler Automobiles (Italian/ American) and Groupe PSA (French). You may not be familiar with these names, but the automotive brands in the portfolio would be well known to most consumers. These include: Maserati, Opel, Peugeot, Jeep, Vauxhall, Alfa Romeo etc.

The Fiat 500 electric car has its roots in the classic 1957 Fiat 500, a car that has been hugely successful and iconic (sold more than 2 million cars globally). The Fiat New 500 EV is bigger than the internal combustion engine (ICE) car: 6 cm in width and length, 22mm longer wheelbase.

The Fiat EV is available as a hatchback and convertible. For those keen on style, an infinite headroom and a keenness to make the most of the sunshine, the convertible is better suited! Of course, the convertible is priced higher than the hatchback.

The Fiat convertible electric car is available in one EV battery size: 42 kWh with a claimed zero-emission electric range up to 188 (WLTP). Of course, the real-world electric range will be lower, impacted by a number of factors, to include: driving profile, weather conditions, passenger load, tyre size, onboard services used etc. Expect a real-world e-range closer to 165 miles. More than suitable for the majority of driving needs. The EV has a Sherpa mode that saves energy by optimising battery charge, air conditioning, speed and acceleration.

The Fiat electric car offers DC charging capability up to 85 kW DC (0%-80%: 35 mins). Put another way, in a mere 5 minutes, up to 30 miles range can be achieved. The average daily distance travelled by a car is 30 miles! The EV incorporates a 11 kW AC (3-phase) onboard charger as standard.

For those with access to three-phase charging at home or the workplace, the 42 kWh EV battery can be fully charged in 4 hours and 15 minutes. Do keep in mind that most homes in India are powered by a single-phase power supply (7.4 kW), resulting in longer charging times.

Though the Fiat pure electric car can be charged via a domestic 3-PIN socket, we at e-zoomed discourage the use of a domestic socket to charge an electric car. It would take up to 15 hours and 15 minutes to charge the 42 kWh battery. We encourage charging an electric car using a dedicated EV home charging station like easee.

The Fiat electric car does not disappoint in terms of its exterior iconic appeal and its interior is just as appealing. The electric convertible includes a host of features: intelligent adaptive cruise control, urban blind spot, drone view (360° parking sensors), rear view parking camera, autonomous emergency braking, traffic sign recognition and speed advisor, attention assist, lane keep assist, emergency call and more. The EV also offers a 10.25″ infotainment display and compatibility with Apple Car Play and Android Auto.

In terms of practicality, for urban driving, its compact size and turning circle are certainly useful. However, the rear seats are a tight squeeze and the boot space limited to 185 L. Given the fabric roof, expect more noise in the cabin, compared to the hatchback body style.

Despite the additional weight of the EV battery(294.3 kg), the front-wheel drive Fiat 500 e can achieve 0-62 mph in 9 seconds. The maximum power is up to 118 hp (220 Nm) and a 93 mph top speed. The EV offers One Pedal driving: with just one pedal you can accelerate and decelerate, recovering kinetic energy to recharge the EV battery.

The Fiat 500 e convertible is not available in India.


PROSCONS
DC charging up to 85 kWRear seats with limited legroom
Good electric rangeMore expensive compared to the hatchback
11 kW onboard charger as standardSmall boot space (185 L)

The All-Electric Fiat New 500 Convertible (credit: Fiat)


Driving an electric vehicle (EV) is cheaper than driving a petrol or diesel vehicle. As an example, in India, filling a full tank of fuel for the internal combustion engine (ICE) Tata Nexon SUV will cost up to Rs 5,000 (assuming an average cost per litre of Rs 100. The Tata Nexon has a fuel tank capacity of 44 L).

In comparison, the Tata Nexon Pure Electric SUV will cost less than Rs 300 for a full EV battery charge (EV Battery size: 30.2 kWh). In India, the average cost for residential electricity is between Rs 5 to Rs 10 per kWh(unit). Therefore the cost to drive per km (or mile) in a pure electric vehicle is substantially lower than a petrol or diesel vehicle.

At an average one can expect a cost per km of Rs 1 for a zero-emission EV, while for an equivalent petrol or diesel vehicle, the cost per km could be up to Rs 7 per km. The annual cost savings achieved by switching to electric driving is significant!


At A Glance
EV Type:Battery-Electric Vehicle (BEV)
Vehicle Type:Cabrio (convertible)
Engine:Electric
Available In India:No

Trims (3 Options)
500 Red
500 Icon
500 La Prima

EV Battery & Emissions
EV Battery Type:Lithium-ion
EV Battery Capacity:Available in one size: 42 kWh
Charging:85 kW DC Fast Charging (0%-80%: 35 mins). 11 kW AC onboard charger (0%-100%: 4 hrs 15 mins)
Charge Port:Type 2
EV Cable Type:Type 2
Tailpipe Emissions:0g (CO2/km)

Charging Times (Overview)
Slow charging AC (3 kW – 3.6 kW):6 – 12 hours (dependent on size of EV battery & SOC)
Fast charging AC (7 kW – 22 kW):3 – 8 hours (dependent on size of EV battery & SoC)
Rapid charging AC (43 kW):0-80%: 20 mins to 60 mins (dependent on size of EV battery & SoC)
Rapid charging DC (50 kW+):0-80%: 20 mins to 60 mins (dependent on size of EV battery & SoC)
Ultra rapid charging DC (150 kW+):0-80% : 20 mins to 40 mins (dependent on size of EV battery & SoC)
Tesla Supercharger (120 kW – 250 kW):0-80%: up to 25 mins (dependent on size of EV battery & SoC)

Dimensions
Height (mm):1527
Width (mm):1900
Length (mm):3632
Wheelbase (mm):2322
Turning Circle (m):9.3
Boot Space (L):185

Model: 87 KW 118HP
EV Battery Capacity:42 kWh
Pure Electric Range (WLTP):186 – 188 miles
Electric Consumption (kWh/100km):14.4
Charging:85 kW DC Fast Charging (0%-80%: 35 mins). 11 kW AC onboard charger (0%-100%: 4 hrs 15 mins)
Top Speed:93 mph
0-60 mph:9 seconds
Drive:Front-wheel drive
Electric Motor (kW):87
Max Power (hp):118
Torque (Nm):220
Transmission:Automatic
Seats:4
Doors:3
Kerb Weight (kg):1405
Colours:8
NCAP Safety Rating:Four-Star

Benefits Of Electric Driving


The benefits of electric driving are many, with significant advantageous over petrol and diesel internal combustion (ICE) engine cars, for all stakeholders. These benefits include:

  • Lower to zero-tailpipe emissions
  • Lower running costs
  • Lower taxes
  • Lower maintenance costs
  • Lower noise pollution
  • Convenience of charging at home
  • Smoother drive
  • Instant torque for acceleration
  • Lower environmental impact

Below we have highlighted three of our favourite benefits of owning and driving an electric car.


Improved Air Quality


Battery-electric vehicles (BEVs) or all-electric vehicles do not have tailpipe pollution. In fact, such electric cars do not even have a tailpipe! Zero-emission electric driving has a real and immediate impact on local air quality i.e. improving air quality. While, plug-in hybrid electric vehicles (PHEVs) have reduced tailpipe pollution compared to traditional petrol and diesel vehicles. The sooner we migrate to electric driving in India, the sooner we can improve air quality for all our cities, towns and villages. Lower air pollution will also result in a reduced number of health issues arising from inhaling toxic pollutants.


Lower Maintenance & Running Costs


Electric vehicles (EVs) are cheaper to maintain and drive. Pure electric cars have far fewer moving parts compared to internal combustion engine (ICE) vehicles. The fewer the moving parts, the lower the probability of repair and maintenance. Moreover charging an electric car can cost as little Rs 50 per 100 kilometres! A full charge can cost between Rs 100 and Rs 200. Significantly cheaper than filling a tank of petrol or diesel!


Lower Noise Pollution


Yes, we in India are far more resilient to noise pollution than those living in the western world. We have certainly got used to horns blaring and engines roaring, day and night. But that does not mean we enjoy or welcome noise pollution. In fact, quite the opposite!

Though much focus has been on the advantageous of ‘air quality’ with an electric car, just as important, is the benefit of lower noise pollution. In fact, pure electric cars are silent, with an inbuilt ‘sound booster’ to increase road safety for pedestrians. As our cities in India and across the world become densely populated with cars, the significant negative impact on ‘quality of life’ as a result of increased noise pollution from petrol and diesel vehicles, is just as dangerous, as increased air pollution. Battery-electric cars are a perfect solution in reducing noise pollution and increasing the living standards for us all. Of course, one can only hope that the self inflicted ‘horn blaring’ pollution will also reduce!


Types Of Electric Vehicles (EVs)


Electric vehicle” is an umbrella term, and a broad one at that. There are a number of different types of electric vehicles (EVs), each with its distinct characteristics and advantages. These include:

  • BEVs: Battery-electric vehicles (pure electric)
  • PHEVs: Plug-in hybrid electric vehicles (electric and internal combustion engine (ICE) combined)
  • MHEVs: Mild hybrid electric vehicles (internal combustion engine (gasoline or diesel) along with regenerative braking)
  • FCEVs: Fuel cell electric vehicle (electric with hydrogen as fuel)

The above “types” are powered either entirely or partially by electric energy and have different environmental impacts.


Battery-Electric Vehicles (BEVs)


Battery-electric vehicles (BEVs), also known as pure electric vehicles, are powered entirely by electricity (i.e. the vehicle does not have a conventional internal combustion engine). BEVs have zero-tailpipe emissions and help improve local air quality.

BEVs are also very economical to drive. A BEV can cost as little as Rs 50 per 100 kilometres to drive. Examples of best-selling EVs include, the all-electric Tesla Model 3 and the all-electric Renault Zoe. A BEV is charged by plugging in the electric vehicle to a dedicated electric car charging station (home or public charging stations). BEVs are well suited for those living in towns, cities and urban centres. Of course, battery-electric vehicles are also suitable for those living in rural settings.


Plug-In Hybrid Electric Vehicles (PHEVs)


Plug-in hybrid electric vehicles (PHEVs) differ from battery-electric vehicles (BEVs), in that, PHEVs use both a conventional internal combustion engine (ICE) and an electric engine for propulsion. Plug-in hybrid vehicles combine the advantages of electric driving and internal combustion engine driving.

On shorter distances, the PHEV uses the electric mode to drive emission-free, using the on-board EV battery and regenerative braking. For longer distances, the plug-in hybrid electric vehicles switches to using the internal combustion engine. With a PHEV, the vehicle can cost as little Rs 50 per 100 kilometres to drive on e-mode, without any tailpipe pollution, and also be driven long-distances, without the fear of range anxiety! Most PHEVs have an EV battery of up to 15 kWh and can achieve a zero-emission electric range of up to 50 kilometres. No wonder PHEVs are fast becoming popular globally, with much potential or India. Like a BEV, the plug-in hybrid electric vehicle is charged by using an external power source (EV charging point) for charging.

PHEVs are suitable for those that drive long-distances on a regular basis but want to lower the negative environmental impact from tailpipe pollution. PHEVs are also suitable for those individuals and families that are seeking to save money by taking advantage of electric driving. The Volvo XC40 PHEV and the Volkswagen Golf 8 are good examples of PHEVs.


Mild Hybrid Electric Vehicles (MHEVs)


Mild hybrid electric vehicles (MHEVs) are a limited form of electric driving. These vehicles also use hybrid technologies (electric driving and internal combustion engine), but the EV battery is much smaller than a BEV or PHEV. Moreover, in a mild hybrid, the EV battery cannot be charged via an external source (i.e. EV charging station). In a MHEV, the battery is charged by capturing the energy released during braking, a process known as regenerative braking. MHEVs have lower tailpipe emissions, and are more economical to own, run and maintain than petrol and diesel cars. MHEVs are a better option than a petrol or diesel car, but not as good an option as a BEV or PHEV. Mild hybrids are well suited for those living in regions with limited charging infrastructure. Again, MHEVs have great potential in India, given the limited public EV charging infrastructure.

The Toyota Prius is a good example of a mild hybrid electric vehicle.


Fuel Cell Electric Vehicles (FCEVs)


Fuel Cell Electric Vehicles (FCEVs) also called hydrogen fuel cell vehicles, have a fuel cell stack that uses hydrogen to generate the electricity needed to power the electric vehicle. The fuel cell generates electricity and pure water vapour that can escape via the tailpipe. It is capable of generating electricity as long as there is a steady supply of hydrogen. Fuel cell electric vehicles can be refuelled with hydrogen at purpose built filling stations. Filling an FEC takes no more than five minutes.

FCEVs have a range of about 500 kilometers or more between refueling. Today, the only and major limitation is the very limited hydrogen refuelling station network globally. The Toyota Mirai FCEV is a good example of this type of EV.




Author

Ashvin Suri

Ashvin has been involved with the renewables, energy efficiency and infrastructure sectors since 2006. He is passionate about the transition to a low-carbon economy and electric transportation. Ashvin commenced his career in 1994, working with US investment banks in New York. Post his MBA from the London Business School (1996-1998), he continued to work in investment banking at Flemings (London) and JPMorgan (London). His roles included corporate finance advisory, M&A and capital raising. He has been involved across diverse industry sectors, to include engineering, aerospace, oil & gas, airports and automotive across Asia and Europe. In 2010, he co-founded a solar development platform, for large scale ground and roof solar projects to include the UK, Italy, Germany and France. He has also advised on various renewable energy (wind and solar) utility scale projects working with global institutional investors and independent power producers (IPP’s) in the renewable energy sector. He has also advised in key international markets like India, to include advising the TVS Group, a multi-billion dollar industrial and automotive group in India. Ashvin has also advised Indian Energy, an IPP backed by Guggenheim (a US$ 165 billion fund). He has also advised AMIH, a US$ 2 billion, Singapore based group. Ashvin has also worked in the real estate and infrastructure sector, to including working with the Matrix Group (a US$ 4 billion property group in the UK) to launch one of the first few institutional real estate funds for the Indian real estate market. The fund was successfully launched with significant institutional support from the UK/ European markets. He has also advised on water infrastructure, to include advising a Swedish clean technology company in the water sector. He is also a member of the Forbury Investment Network advisory committee. He has also been involved with a number of early stage ventures.

Buy Electric Driving Products

Sign up for e-zoomed news and offers

This site uses technical cookies to guarantee an optimal and fast navigation, and analysis cookies to elaborate statistics.
You can visit the Cookie Policy to get more insights or to block the use of all or some cookies, by selecting the Cookie Settings.
By choosing Accept, you give your permission to use the abovementioned cookies.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are necessary for the website to function and cannot be switched off in our systems.

In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

In order to use this website we use the following technically required cookies
  • wordpress_test_cookie
  • wordpress_logged_in_
  • wordpress_sec

Decline all Services
Accept all Services